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Background
The skin, the biggest organ in the human body, serves 
several vital physiological and biological functions in 
addition to its aesthetic value, such as protecting the 
body from harmful substances, assisting in the percep-
tion of diverse sensations, and regulating temperature 
[1, 2]. Skin problems not only reduce patients’ quality of 
life and create psychological strain, but also bring a heavy 
economic burden to families and society [3–5]. Many 
skin diseases are associated with adult depression [6, 7]. 
Human skin wounds cause a significant epidemiological 
and financial cost. With the aging of the population and 
the increase of known comorbidity incidence rate affect-
ing wound healing, its impact will continue to increase 
[8]. Hypopigmentation can cause aesthetic and psycho-
logical problems, reducing patients’ quality of life [9]. 
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Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical 
aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation 
have an impact not only on appearance but also on patients with physical and psychological issues, and even 
impose a significant financial burden on families and society. However, due to the complexities of its occurrence, 
present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective 
treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine 
therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve 
tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo 
and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. 
As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics 
and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical 
transformation.
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Scar is a common phenomenon after wound healing that 
seriously affects the appearance of the wound and brings 
about aesthetic, functional, and/or psychological issues 
[10, 11]. Especially facial scars are more likely to lead to 
functional defects and psychological burden. The market 
for scar therapy is anticipated to grow to around 32 bil-
lion US dollars by 2027 [12].

Therefore, skin aesthetics have become increasingly 
fashionable in recent years as the economy has grown. 
Internal aging and the stimulation of numerous external 
irritants ultimately affect the skin structure, resulting in 
cosmetic issues such as wrinkles and hair loss as well as 
functional issues such as barrier maintenance hurdles 
[13]. The internal aging mechanism of the skin is com-
plex, including the accumulation of gene mutations, 
DNA damage, cellular aging, inflammation, and oxidative 
stress (OS) [14, 15]. External aging is the consequence 
of a combination of environmental causes, including 
ultraviolet (UV) light, PM2.5, nitrogen dioxide, ground 
ozone, cigarette smoke, food additives, and heavy metal 
ions, ultimately leading to DNA damage and cellular 
dysfunction [15, 16]. This has a significant influence on 
the lives of patients, resulting in a variety of physiologi-
cal and psychological issues. As a result, individuals are 
increasingly looking for effective and safe medical cos-
metic treatments to tackle skin concerns. There are many 
ways to improve the skin condition, such as through skin 
care, medications, laser, and surgery [17]. However, each 
of these approaches has its own set of drawbacks and fails 
to produce the desired results in terms of skin repair and 
regeneration [18]. As a current hot research topic, by 
promoting and controlling endogenous stem cell popu-
lations and/or restocking cell pools for organizational 
stability and regeneration, stem cell-based treatments 
constitute a crucial subspecialty of regenerative medicine 
and have achieved superior therapeutic effects [19].

Stem cells possess advantageous characteristics, like 
being able to self-regenerate and specialize into several 
cell types. Stem cells alone, stem cell secretion groups, 
and stem cells combined with nanomaterials are the three 
major ways that stem cell treatment is now applied [20]. 
They have been extensively investigated in treatments to 
treat numerous human maladies, including Type 1 diabe-
tes, Alzheimer’s disease, Parkinson’s disease, spinal cord 
injury, and cancer [21–25]. Yet there are certain risks 
to stem cell treatment that cannot be overlooked, such 
as genomic instability during cell expansion, cell malig-
nancy, the possibility of increased tumor development in 
vivo, and the possibility of poor cell differentiation [26–
28]. There are three types of stem cells employed for ther-
apeutic purposes: embryonic stem cells (ESCs), induced 
pluripotent stem cells (iPSCs), and adult stem cells like 
MSCs [29]. ESCs, originating from embryos’ inner cell 
aggregate, possess pluripotent properties and hold the 

potential to differentiate into a full range of cell types. 
However, there are major restrictions on using ESCs in 
clinical practice due to ethical issues [30]. The essence of 
ethical issues in ESCs is that obtaining ESCs requires the 
devastation of early embryos, which are considered to 
have the moral status of a complete human and possess 
enormous moral sanctity. Therefore, it is not morally per-
missible to use them for scientific research or therapeutic 
purposes [31–33]. The potential alternatives for ESCs are 
iPSCs and MSCs [34]. IPSCs may be created from mature 
cells by gene editing and ectopic expression of particu-
lar pluripotent stem factors, thus avoiding many ethical 
issues [35]. However, there are still challenges in the pro-
cess of creating iPSCs, such as monitoring and reducing 
the genetic instability of iPSCs and enhancing immune 
compatibility [36, 37]. And due to genetic instability, 
iPSCs have tumorigenic potential [34, 36]. Therefore, 
further study is required to develop a reliable, repeat-
able, and successful reprogramming strategy [38]. MSCs 
can be derived from various tissues. Most studies agree 
that these adult stem cells are abundant, diverse in ori-
gin, easy to harvest and isolate, have strong pluripotent 
differentiation ability, and therefore have multiple appli-
cations [39–42]. Recent research has revealed that MSCs 
can promote skin wound healing, pigmentation modula-
tion, and anti-aging as a therapeutic option for cutaneous 
medical aesthetics [43–46].

Currently, research on the combined use of MSCs and 
nanomaterials focuses on employing materials to cre-
ate an environment that favors cell survival, differentia-
tion, proliferation, and paracrine secretion, promoting 
the greater efficacy of MSCs [47, 48]. Although these 
nanomaterials have achieved good preclinical efficacy, 
biocompatibility issues, immune issues, and mechanical 
properties still need improvement [49].

We systematically searched PubMed and Web of Sci-
ence for papers related to mesenchymal stem cells, der-
matological aesthetics, wound healing, scar repair, skin 
rejuvenation, and anti-pigmentation from 1975 to Febru-
ary 2024. Here, we will describe the most current findings 
on the processes and uses of MSCs and their secretomics 
in skin medical aesthetics, such as wound healing, scar 
repair, skin rejuvenation, and pigmentation modification. 
A deeper knowledge of their respective roles will clarify 
the use of stem cell therapy in cutaneous medical aes-
thetics, providing new strategies for the future.

Mechanisms underlying skin damage
The basis of the skin physiology
The skin, comprising the epidermis, dermis, and sub-
cutaneous tissues, serves as the human body’s biggest 
biological, chemical, and immunological barrier [2, 50]. 
The cuticle, which is the skin’s exterior layer, measures 
10–20  μm thick and is composed of 10–15 layers of 
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interconnected dead cells. The subsequent layer, known 
as the living epidermis, has a thickness of 100–150  μm 
and primarily comprises keratin-producing cells in vari-
ous stages of differentiation [51]. The third layer, the 
dermis, is abundant in growth factors and extracellular 
matrix (ECM) proteins [52]. Important cell types within 
the dermal layer include keratinizing cells, macrophages, 
fibroblasts, and adipocytes, which can communicate with 
each other in the skin environment [18]. The subcutane-
ous layer, which comprises adipocytes, MSCs, and con-
nective tissue, is the last layer [53].

However, genetic composition, lifestyle, environmental 
pollution, food additives, solar irradiance, heavy metal 
exposure, and particulate matter in the air can cause 
skin cytotoxicity, weakening of the skin barrier, damage 
to matrix protein, and an active inflammatory response 
[54]. Loss of skin composition, as well as impairment of 
physiological functioning and natural structures, can 
result in skin abnormalities such as aging, hyperpigmen-
tation, and poor skin healing after injury, all of which can 
have a detrimental effect on skin aesthetics [13] (Fig. 1).

The physiological basis of skin wound healing
Skin wound repair is a complicated procedure that 
comprises many closely connected activities, which are 
broadly classified as inflammatory reactions, epitheli-
alization, wound shrinkage, collagen deposition, and 

remodeling [55]. During the inflammatory response 
stage, immune cells prepare the wound for healing by 
eliminating pathogens, cell fragments, and apoptotic 
cells from the wound location [56]. Local monocytes 
travel into the wound, mature into macrophages, con-
sume cellular debris and apoptotic cells, and produce a 
substantial amount of growth factors [57]. Inflammation 
increases the change of M1 macrophages into M2 macro-
phages. M2 macrophages enhance tissue repair and enor-
mous ECM production by managing the multiplication 
and migration of keratin-forming cells, fibroblasts, and 
endothelial cells [58, 59]. Afterwards, the earlier formed 
wound matrix will gradually be replaced by granulation 
tissue, which contains capillaries, fibroblasts, and col-
lagen bundles and serves as a scaffold for cell migration 
and growth [60]. Then, entering the epithelialization 
stage, keratinocytes migrate to the damaged dermis and 
reestablish the epithelial barrier function [61]. Cells rap-
idly proliferate, and new vessels and epithelium emerge. 
Afterwards, fibroblasts differentiate into myofibroblasts 
and contract the wound. During the collagen deposition 
stage, high concentrations of immature type III colla-
gen are first released by fibroblasts into the stroma [62]. 
During the final remodeling phase, fibroblasts continue 
to secrete collagen. Over time, fibroblasts release matrix 
metalloproteinase (MMP) to remodel type III collagen 
into type I collagen, allowing the wound to seal. Collagen 

Fig. 1 The effects of external factors on the skin. Skin cytotoxicity, skin barrier degradation, and inflammatory response activation can be caused by gene 
composition, environmental pollution, dietary additives, solar irradiance, heavy metal exposure, and particulate matter in the air
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fibers gradually arrange, and when the wound’s ten-
sile strength rises, the wound’s healing is complete [43, 
63]. Throughout the process, many skin cells, like fibro-
blasts, adipocytes, endothelial cells, keratinocytes, mac-
rophages, and other immune cells, interact to promote 
wound healing [64]. Among them, proliferation, migra-
tion, differentiation, and apoptosis of epidermal kera-
tin-forming cells and dermal fibroblasts with damaged 
healing functions are the major causes [65].

Chronic wounds are defined as those that are deep, full, 
or partial thickness injuries and fail to recover within six 
weeks. They heal slowly and are linked with severe fibro-
sis, which can result in hyperplastic scars and keloids in 
some people [66]. Aside from its bad visual appearance, 
the tissue near the scar lacks several fundamental der-
mal components, like glandula sebacea, folliculus pili, 
and sensory nerve receptors [67]. There are several risk 
factors for the formation and maturation of scarring, 
including excessive collagen deposition, reduced fibro-
blast apoptosis, delayed keratinocyte function, increased 
transforming growth factor β1 (TGF-β1) expression, 
excessive angiogenesis, prolonged inflammation, and 
even aging [68]. Early management of the inflammatory 
reaction is crucial for renewal since unresolved long-
term inflammation favors scar formation over regenera-
tion [69–71]. Keloids and proliferative keloids are fibrous, 
proliferative malignant processes caused by excessive 
collagen and ECM protein buildup [72–74]. Through 
exosome-mediated intercellular communication, M2 
macrophages are essential for the creation of permanent 
scars [18].

The physiological basis of skin aging
The skin ineluctably loses structural and functional fea-
tures due to a variety of internal and external factors. 
External factors, like airborne pollutants, lifestyle deci-
sions, and notably UV radiation, are the principal causes 
of skin aging [75]. Aging reduces skin elasticity and 
changes skin thickness and collagen tissue, leading to 
wrinkles [76]. UV-induced photoaging is symbolized by 
sunburn, uneven pigmentation, roughness, dryness, and 
wrinkles, which are generated mostly by alterations in the 
ECM material [77–80].

Skin aging mechanisms are complicated, and they may 
include genetic mutations, DNA damage, cellular senes-
cence, inflammation, and OS [75]. The accumulation of 
mutations in multicellular organisms may lead to age-
related cell degeneration and death, resulting in the aging 
of the organism [81]. Age-related deficiencies in stem 
cells’ DNA repair machinery can result in chromosomal 
rearrangements or mutations that impair epidermal stem 
cells’ capacity to self-renew and thus accelerate the aging 
of the skin and/or the development of cancer [82]. OS has 
been demonstrated to have a major impact on the aging 

of the skin, and antioxidants like melatonin, vitamin C, 
and glutathione have the potential to aid skin renewal 
[75]. Excess reactive oxygen species (ROS) can directly 
harm cell function and structure, regulate inflammatory 
reactions, damage genetic components, and speed up 
the aging process of the skin [83]. MMPs are important 
regulatory targets of ROS-induced skin aging because 
they regulate the breakdown of numerous ECM compo-
nents, especially collagen [84]. Human dermal fibroblasts 
(HDFs) are cells that primarily synthesize structural ele-
ments like pre-collagen and elastic fibers [85]. Aging 
alters the amount and growth of HDFs, decreases colla-
gen production and repair, and speeds up MMP destruc-
tion of the existing skin matrix [18, 86]. ROS-stimulated 
MMP synthesis is mediated by the mitogen-activated 
protein kinase (MAPK) signaling cascade, which includes 
p38, extracellular signal-regulated kinase, and c-Junn-
terminal kinase. Then the transcriptional factor activator 
protein 1 (AP-1) becomes activated and governs MMP-
1, MMP-3, MMP-9, and MMP-12 transcription [87]. 
Another MMP-mediated signaling mechanism associ-
ated with the aging of skin is the TGF-β/SMAD system, 
which is hampered by TRII expression downregulation, 
resulting in decreased type I collagen formation [88]. 
Another transcription factor that is activated is nuclear 
factor-κB (NF-κB), which controls the response to pho-
toaging and UV radiation by mediating the production of 
inflammation and MMP [89].

The interplay between melanocytes and keratin-form-
ing cells in the epidermis is responsible for skin pigmen-
tation. When exposed to UV radiation, keratin-forming 
cells release paracrine hormones such as endothelin-1 
and α-melanocyte-stimulating hormone (α-MSH), which 
stimulate melanocytes to produce melanin [90]. Appro-
priate melanin serves as a natural sunblock, but excess 
melanin production, on the other hand, can lead to 
hyperpigmentation, which presents as UV-related pig-
mentation disorders such as solar freckle disease and 
melasma [91, 92]. When excessively exposed to UV light, 
fibroblasts age and create a number of skin aging-associ-
ated secretory proteins, including differentially expressed 
secretory factors that control melanogenesis. UV-irradi-
ated fibroblasts, in particular, generate stem cell factor 
and secrete frizzled-related protein-2, which alter mela-
nogenesis and contribute to the hyperpigmentation seen 
in solar freckles or melasma [93, 94].

Mesenchymal stem cells and their secretory group
Mesenchymal stem cells
A major challenge in the field of healthcare is the dam-
age to tissue that results from illness, aging, trauma, and 
other causes. Regenerative medicine seeks to solve this 
problem by regenerating injured tissues [95, 96]. Stem 
cells are crucial to many regeneration procedures because 
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they are able to differentiate into specific kinds of cells 
[97]. They are theoretically able to infinitely renew them-
selves under appropriate conditions and can maintain, 
produce, or restore injured tissue, which is difficult for 
other treatment methods to achieve [98, 99]. Compared 
with ESCs and iPSCs, MSCs have no ethical issues and 
possess stable cell phenotypes and a low immune status, 
which can reduce tumor risk and improve survival rate. 
Therefore, MSCs’ clinical applications are safer [28, 100].

MSCs are pluripotent stem cells, they come from a range 
of body tissues, including bone marrow, umbilical cord, 
muscle, adipose tissue, and teeth [101, 102]. MSCs from var-
ious tissues have distinct biological characteristics, as evi-
denced by differences in differentiation ability and secreted 
factors (Fig. 2). MSCs may be used to treat soft tissue fill-
ing and revitalization, hair regeneration, scar reduction, and 
skin anti-aging. Some research has found that MSCs are 
able to enhance skin health by increasing skin thickness, col-
lagen formation, and minimizing wrinkles [76]. Mechani-
cally, MSCs may be found at the site of damage and release 
wound repair cytokines like platelet-derived growth factor 
(PDGF), insulin-like growth factor 1 (IGF-1), and interleu-
kin-8 (IL-8), controlling inflammatory cells and decreasing 
fibrosis [103, 104]. In addition, it can regulate the immune 

reaction and stimulate tissue regeneration by secreting 
growth factors, chemokines, cytokines, and angiogenic fac-
tors [105]. Adipose-derived stem cells (ADSCs) and bone 
marrow mesenchymal stem cells (BMMSCs) have been 
investigated and used to limit scar formation, stimulate col-
lagen production, enhance skin tone, and fight aging [106, 
107]. According to the single cell map, ADSCs have less het-
erogeneity and rely less on mitochondrial metabolism for 
energy production than BMMSCs, resulting in improved 
stem cell maintenance and resistance to apoptosis [108]. 
ADSCs can be employed alone or in conjunction with inter-
stitial vascular fraction to treat skin damage repair in vitro, 
such as lowering wrinkles, facial scars, antioxidant activity, 
and blocking melanin formation, leading to skin whiten-
ing [109–115]. Combined with other techniques, including 
carbon dioxide laser surface repair and cultured fibroblasts, 
ADSCs have shown skin-rejuvenating effects [116]. In com-
parison to ADSCs, the production of BMMSCs is more 
intrusive and damaging to patients. However, BMMSCs are 
more capable of self-renewal, differentiation, and immuno-
logical control [76]. For chronic wounds, BMMSCs move 
to the wound site between 7 and 8 weeks or 16–20 weeks 
after intravenous treatment, boosting pro-collagen pro-
duction [117, 118]. Amniotic fluid stem cells and umbilical 

Fig. 2 The source and functioning mechanism of MSCs. MSCs can be derived from a variety of tissues, like bone marrow, muscle tissue, adipose tissue, 
teeth, and umbilical cord, etc. MSCs can function through self-renewal, differentiation, and secretion

 



Page 6 of 20Li et al. Stem Cell Research & Therapy          (2024) 15:169 

cord-derived stem cells (UMSCs) are two more sources of 
stem cells [119]. They are highly successful in restoring skin 
and immunological compatibility. It cannot, however, get an 
adequate amount of cells for therapy [120].

There are numerous treatments for improving skin 
health and treating skin problems, such as skin care, laser 
therapy, medicine, radiation therapy, and surgery [17]. 
However, because of the complicated nature of skin dis-
orders, which involve many cell types and growth fac-
tors, these therapeutic mechanisms are relatively simple 
and have not achieved the desired skin repair effect 
[18]. MSCs not only regenerate tissue and restore dam-
aged skin, but they also have various functions such as 
regulating immunity, reducing inflammatory reactions, 
and promoting angiogenesis. They have diverse treat-
ment mechanisms, minimal trauma, significant preclini-
cal effects, and no obvious toxic side effects in current 
research. Therefore, they can be used as a reliable alter-
native therapy [95, 121].

MSCs secretory group
MSCs can secrete or shed numerous growth and trophic 
substances into the extracellular environment, creating 
the so-called secretome. This includes the soluble frac-
tions and the extracellular vesicle (EV) fractions. EVs are 
important in the delivery of different genetic materials 
and proteins [122–126].

EVs are divided into exosomes (Exo), microvesicles 
(MV), and apoptotic vesicles based on their size, con-
tent, and origin [104]. Among them, Exos have been 
extensively studied, which are tiny particles (40–120 nm 

in size) formed by multivesicular bodies (MVB). Exos 
include a variety of physiologically active macromole-
cules, including nucleic acids (such as miRNA, IncRNA, 
CircRNA, and DNA), proteins, and lipids that are impor-
tant in cellular bioregulation [122, 127–129]. Tetraspa-
nins (CD9, CD63, CD81, and CD86), membrane-linked 
proteins, and heat shock proteins (HSP60, HSP70, and 
HSP90) are abundant in Exos [127] (Fig. 3). Exos act by 
injecting their contents straight into cells, avoiding the 
requirement for specialized receptor expression [122, 
128]. Exos may therefore serve as intercellular commu-
nication carriers, helping to overcome biological bound-
aries [130]. Exo possesses unique proteins and nucleic 
acids, depending on the origin of the cell, that support 
tissue regeneration through intercellular communica-
tion and are engaged in the control of apoptosis through 
immunomodulatory functions, anti-oxidative stress, and 
other mechanisms [127, 128] (Fig. 4).

Exo could modulate vital biological functions such as 
cell division, migration, differentiation, and death [18]. 
Studies have shown that endogenous exosomes shuttle 
through many types of skin cells and that their medi-
ated messaging and intercellular contact are required for 
maintaining cell function and tissue homeostasis [131]. 
Exo from stem cells is expected to be a useful treatment 
in regenerative and cosmetic medicine, particularly in 
scar avoidance and reduction, pigmentation modula-
tion, and hair growth [18]. Unlike stem cells, exosomes 
are small, inactive substances that can be stored at -80 °C 
for over 6 months without toxic cryoprotectants while 
still functioning [130, 132]. There is no requirement to 
sustain cell viability and efficiency from production to 
storage to delivery [133]. They also may avoid problems 
associated with cell therapy, including the potential for 
poor cell survival, immunological rejection, age-associ-
ated genetic instability, functional inactivation, and unfa-
vorable differentiation [134].

MSC lysates are cell breakdown products containing 
cell membrane surface proteins and cellular contents that 
have a direct effect on injured tissues; they are not immu-
norejected like cells and play a function in regeneration 
comparable to exosomes and cell supernatants [135]. 
MSC lysates have anti-apoptotic activity, reducing tissue 
damage and promoting regeneration by inhibiting apop-
tosis [136]. The lysate of dental pulp stem cells (DPSCs) is 
abundant in various cytokines that enhance the cellular 
development environment and encourage the production 
of collagen in the skin [137]. In terms of safety, no seri-
ous negative effects, such as allergic reactions leading to 
death, have been observed using MSC lysate [138]. How-
ever, the main limitation is that the active ingredients are 
not yet well defined.Fig. 3 Hallmarks of exomes. Exo membranes contain tetraester proteins 

(CD9, CD63, CD81, and CD86), and transmembrane proteins. Exo contains 
heat shock proteins (HSP60, HSP70, and HSP90), nucleic acids, amino acids, 
and lipids
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The effect and possible mechanism of MSCs in 
improving wound healing and scar repair
MSCs promote wound healing
MSCs achieve the effect of promoting wound healing 
through various mechanisms. Firstly, what works is the 
multi-directional differentiation ability of MSCs. MSCs 
may develop into a range of cells, for example, ADSCs 
can develop into adipocytes, endothelium cells, skeletal 
muscle cells, and smooth muscle cells to enhance skin 
wound healing [139, 140]. ADSCs are better suited to 
directed adipocyte growth than stem cells from the rest 
of the body. According to previous research on injury 
healing and regeneration, adipocytes can govern fibro-
blast recruitment and play a key role in skin reconstruc-
tion [141]. Previous studies have shown that fibroblasts 
are reduced in animals with fat accumulation problems, 
and adipocytes may indirectly encourage fibroblast 
recruitment by regulating the generation of unknown 
fibroblast precursor cells in the skin. There is also evi-
dence that direct intercellular communication between 
adipocytes and fibroblasts may influence fibroblast 
migration during skin wound repair [141]. Dermal adi-
pocytes are critical in the initial stages of injury-induced 

immune activation. Shook et al. discovered that adi-
pocytes at the wound site dilate and then shrink due to 
adipose triacylglyceride lipase dependent lipolysis. The 
products of lipolysis recruit immune cells, which are 
necessary for effective wound closure [142]. Adipocytes 
have also been shown to recruit fibroblasts necessary 
for wound healing and promote ECM deposition [143]. 
After the wound heals, the adipocytes along the wound’s 
edge undergo lipolysis, which releases free fatty acids, 
activates macrophages, induces angiogenesis, and pro-
motes tissue repair [144]. ADSCs can grow into vascular 
endothelial cells. Under the stimulation of bone morpho-
genetic protein 4 (BMP-4) and TGF, ADSCs can develop 
into smooth muscle cells (SMCs) [145, 146]. Because 
smooth muscle is essential for blood vessel physiological 
performance, the creation of SMCs is necessary for the 
in vitro construction of blood vessels with correct physi-
ological function [50, 147]. Blood vessels rely on SMCs 
for structural support and contraction [148]. The vascu-
lar system facilitates the transfer of nutrients and oxygen, 
and creates an inflammatory environment. Therefore, 
the formation of a new circulatory system through-
out the regeneration and repair phase is critical for the 

Fig. 4 Formation and secretion of exosomes. The secretory cells are stimulated to transform early endosomes into multivesicular bodies, which secrete 
exosomes via fusing with cell membranes, and then exosomes carry various substances into recipient cells
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entire healing process [149]. Damaged wound vascular 
reconstruction can impede healing and contribute to the 
development of chronic wounds [150]. ADSCs can also 
differentiate into skeletal muscle cells to promote tissue 
healing [151].

The paracrine function of MSCs is also crucial. MSCs 
can colonize at the site of injury and express high levels 
of wound-healing cytokines like IGF-1, PDGF, and IL-8, 
thereby regulating inflammatory cells and down-regu-
lating fibrosis [103, 104]. ADSCs, in particular, may pro-
duce almost all of the growth factors required for healthy 
wound repair, like vascular endothelial growth factor 
(VEGF), hepatocyte growth factor (HGF), basic fibro-
blast growth factor (bFGF), and PDGF. They can also 
stimulate the excretion of those growth factors in chronic 
wounds in a hypoxic environment [50]. MSCs also pro-
mote new blood formation, modulate the immune 
response, and inhibit excessive inflammation. Without 
neovascularization, acute injuries could turn chronic, 
and EVs generated from different MSC sources have been 
demonstrated to induce angiogenic responses in vivo 
[152–155]. MSCs enhance angiogenesis and facilitate 
the growth of a functioning vascular system during this 
stage of wound healing [156–158]. MSCs may promote 
neovascularization in adults by releasing pro-angiogenic 
factors like VEGF, hypoxia inducible factor-1 (HIF-1), 
epithelial growth factor (EGF), and C-X-C motif che-
mokine ligand 12 (CXCL12) [159], and secreting various 
molecules that improve vascular stability and protection 
[160, 161]. ADSCs release angiogenic cytokines such as 
TGF-β, VEGF, HGF, bFGF, PDGF, and angiopoietin-1 
(Ang-1), which increase angiogenesis in granulation 
tissue, enhance local blood circulation, accelerate tis-
sue regeneration at the ischemic site, and shorten heal-
ing time [162]. The continuation of an inflammatory 
reaction that should have halted after the inflammatory 
phase is one reason for wound healing problems, result-
ing in a delayed healing process [50]. ADSCs diminish 
pro-inflammatory factors like tumor necrosis factor-α 
(TNF-α) and interferon-γ (IFN-γ) while increasing anti-
inflammatory ones like interleukin-4 (IL-4) and interleu-
kin-10 (IL-10) [163]. Systematically infused BMMSCs 
migrate to local wound sites, interact with the inflamma-
tory microenvironment, and induce macrophage polar-
ization toward the M2 phenotype [164, 165]. ADSCs 
regulate cytokines by suppressing T-lymphocyte activa-
tion and B-lymphocyte apoptosis [166]. ADSCs can also 
suppress the immune response via direct cell-to-cell con-
tacts and paracrine cytokines such as IL-10, HGF, indole-
amine 2,3-dioxygenase 1, and TGF-β [50]. MSC therapy 
improves fibroblast survival and migration as well as 
fibroblast ECM deposition, which improves healing [167, 
168].

Due to the fact that paracrine function is one of MSCs’ 
primary mechanisms of action, in-depth research has 
been conducted on the secretomics of MSCs. The fol-
lowing will provide a detailed introduction. For example, 
ADSC extracellular vesicles promote wound healing by 
increasing phosphorylation of aging biomarkers VEGF, 
VEGF receptor 2 (VEGFR2), and senescence marker pro-
tein 30 (SMP30) while inhibiting the creation of ROS and 
inflammatory cytokines like interleukin-1 (IL-1), TNF-
α, and interleukin-6 (IL-6) [169]. ADSC-exos perform 
a crucial part in wound healing by acting on key target 
cells like HDFs and human immortalized keratinocytes 
(HaCaTs) through multiple signaling pathways [170]. Ma 
et al. treated HaCaTs with H2O2 to simulate skin dam-
age and discovered that ADSC-exos can improve HaCaTs 
proliferation and migration, and prevent apoptosis via 
the Wnt/β-linked protein signaling pathway [171]. He 
et al. recently demonstrated that malat1-containing 
ADSC-exos promoted wound repair by stimulating the 
Wnt/β-linked protein pathway [172]. By upregulating 
the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway, 
ADSC-exos may promote and improve collagen produc-
tion during skin wound healing [173]. Li et al. discov-
ered that when diabetes rats were given exosomes from 
ADSCs with high expression of NF-E2-related factor 
2 (Nrf2), the wound ulcer area of their feet was greatly 
reduced. Collagen formation is particularly vital in the 
initial phases of recovery, whereas matrix rebuilding is 
of greater significance later in the healing process [134]. 
ADSC-exos improves ECM remodeling and reduces scar-
ring by modulating the ratio of type III/type I collagen, 
TGF-β3/TGF-β1, and MMP-3/tissue inhibitor of metal-
loproteinases 1 (TIMP-1) and promoting HDFs differ-
entiation [174]. To prevent scar formation in an incision 
treatment model, ADSCs exosomes increase type I and 
III collagen formation early in the recovery phase while 
inhibiting collagen production later in wound healing 
[109](Fig. 5).

Bandages, hydrogels, and sponges are the main nano-
drugs used to assist wound healing [175, 176]. Mozafari et 
al. designed thermosensitive hydrogel capsules to reduce 
the level of inflammation and promote wound recov-
ery [177]. When BMMSCs were cultivated in hydrogels 
and administered to skin wounds in a mouse model, the 
therapy aided in wound healing, epithelial cell multiplica-
tion and re-epithelialization, and lowered inflammatory 
responses in serious skin lesions [178]. Graphene has 
good biocompatibility, which can stimulate cell prolifera-
tion and have antibacterial properties. Previous research 
has discovered that the interaction of graphene-based 
nanomaterials with cells involved in wound repair reac-
tions might improve the selectivity of MSC Exos in regu-
lating gene expression, thereby promoting wound healing 
[179]. Silver nanoparticle (AgNP)-based nanomaterials 



Page 9 of 20Li et al. Stem Cell Research & Therapy          (2024) 15:169 

have been widely studied and have a wide range of appli-
cations. RPS-AgNPs nanocomposites synthesized by 
impregnating radiosterilized pig skin (RPS) with AgNPs 
suspension reduce bacterial growth and contribute to the 
survival and proliferation of MSCs [180]. The synthesis of 
AgNPs from the water extract of turmeric leaves and the 
biosynthesis of AgNPs through polycystis algae showed 
significant antibacterial and wound healing potential 
[181, 182]. CuS@BSA nanoparticles can induce MSCs to 
differentiate into fibroblasts, making them an effective 
tool for influencing MSC differentiation [183].

MSCs promote scar repair
Plenty of research has proven that MSC can both improve 
wound healing and reduce scar formation. Fang et al. 
discovered that UMSCs decreased scar development 
and myofibroblast production in a mouse model of skin 
defects [184]. Liu et al. demonstrated that MSCs trans-
planted through the ear artery dramatically decreased 
proliferative scar development in a rabbit ear prolifera-
tive scarring model, implying that MSCs may have prac-
tical uses in regulating wound healing [185]. Similar to 
that, another experiment in a rabbit model found that 
local application of MSCs effectively reduced prolifera-
tive scar development by controlling inflammation [186]. 

In the rabbit model, Li et al. discovered that transplanting 
BMMSCs overexpressing TGF-β3 dramatically enhanced 
wound repair and decreased the production of skin scar 
[187].

MSCs paracrine activity is crucial in this regard. MSCs 
produce a variety of antifibrotic mediators and growth 
factors, including HGF, IL-10, and adrenal medulla [188, 
189]. MSCs that migrate to the site of injury emit HGF 
and Prostaglandin E2, which inhibit myofibroblast dif-
ferentiation and avoid epithelial-mesenchymal transition 
[190, 191]. MSCs may also influence the formation of 
ECM and fibroblasts for better scarring. Cecelia C. Yates 
et al. discovered that allogeneic MSCs transplantation 
increased fibroblast proliferation, migration, and ECM 
deposition, all of which are required for wound healing 
and reduced post-traumatic inflammation [167]. Similar 
to cutaneous tissue, MSCs signaling causes other nearby 
cells to form the right ECM [192].

MSC exosomes promote collagen deposition and have 
antifibrotic properties in proliferative scarring [193–195]. 
Wang et al. indicated in a mouse model that ADSC-exos 
improved ECM remodeling and scar-free healing. The 
underlying process may be connected to the modula-
tion of the type III: type I collagen ratio, MMP3:TIMP-1, 
TGF-β3:TGF-β1, and the inhibition of myofibroblast 

Fig. 5 The mechanism by which MSCs promote skin wound healing. In damaged skin, MSCs promote the secretion of VEGF, bFGF, PDGF, IGF-1, HIF-1, 
EGF, CXCL12, Ang-1, HGF, TGF-β, IL-10, IL-4, inhibit the secretion of TNF-α, IFN-γ, IL-1, IL-6, and the level of ROS, resulting in enhanced differentiation migra-
tion and reduced apoptosis of HaCaTs and HDFs, thus promoting skin collagen synthesis, hematopoietic formation, and ECM deposition, leading to the 
tendency of skin wound healing
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differentiation [174]. Furthermore, in a mouse model 
with full-thickness skin injuries, ADSC-exos shortened 
healing time, promoted collagen synthesis, and reduced 
scarring by activating the signaling pathway of PI3K/Akt 
[173]. Hu et al. discovered that topical administration of 
human umbilical stalk plasma exosomes overexpress-
ing miR-21-3p expedited re-epithelialization, decreased 
scar breadth, and improved angiogenesis in mouse skin 
wounds by reducing phosphatase and tensin homo-
log (PTEN), and sprouting homologue 1 (SPRY1) [196]. 
Zhang et al. revealed that placental MSC-exos-induced 
wound restoration may be done mostly by downregulat-
ing the Yes-associated protein signaling pathway, thereby 
inhibiting Engraviled-1 to reduce scar formation [197]. 
Yuan et al. discovered that exogenous miR-29a90-modi-
fied ADSC-exo treatment reduces scar growth by block-
ing the TGF-β2/SMAD3 signaling pathway [198]. Fang 
et al. revealed that UMSC-Exos enriched with particular 
microRNAs (miR-21, miR-23a, miR-125b, and miR-145) 
decrease myofibroblast production and anti-scarring 
by suppressing the TGF-β2/SMAD2 pathway [184]. In a 
mouse model of skin abnormalities, UMSCs-exos inhibits 
TGF-β2/SMAD2 pathway activity, decreasing myofibro-
blast differentiation and over-aggregation, and therefore 

reducing hyperfibrosis and scar formation [18]. These 
data suggest that MSC-exos, especially ADSC-exos, can 
modulate fibroblast activity, as well as collagen deposi-
tion or alignment, to promote scar-free patterns (Fig. 6).

In the application of nanomaterials, Zheng et al. found 
that MSCs-rich hydrogels helped skin wound healing and 
formed scar-free tissue with hair follicles [199]. When 
used in conjunction with a multifunctional polysaccha-
ride-based dressing scaffold, ADSC-exos can accelerate 
recovery by increasing cell proliferation, granular tissue 
growth, collagen accumulation, re-epithelialization, and 
remodeling while decreasing scar tissue development and 
skin attachment regeneration [200]. Table  1 points out 
recent clinical research on the use of MSCs to treat dif-
ferent kinds of wounds. More clinical studies with MSCs 
transplantation are expected to be conducted in the 
future.

The role and possible mechanism of MSCs in 
promoting skin rejuvenation
By increasing fibroblast growth and biological activity, 
lowering inflammation and ROS, boosting collagen pro-
duction, and decreasing MMP expression, MSCs have 
also demonstrated promising results in the therapy of 

Fig. 6 The mechanism by which MSCs promote skin scar repair. MSCs have the ability to stimulate the release of HIF-1, VEGF, EGF, CXCL12, HGF, and IL-10 
in scarred skin while inhibiting the release of PTEN, SPRY1, and Engraviled-1. Exosomes secreted by MSCs contain miR-21, miR-23a, miR-125b, and miR-145 
that can suppress the TGF-β2/SMAD2 pathway, promote fibroblast differentiation and migration, and inhibit myofibroblast differentiation and aggrega-
tion. This can reduce fibrosis and promote ECM remodeling, collagen deposition remodeling, and epithelial regeneration
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aging skin [75]. ADSCs can be employed individually or 
in conjunction with stromal vascular fraction to repair 
skin defects such as face scars, antioxidants, wrinkles, 
and melanin synthesis, resulting in skin whitening [110–
115, 209]. Nuclear receptor-interacting protein 1 (Nrip1), 
according to Hu et al., plays an important function in 
aging. Treated with ADSCs, skin aging was slowed with 
decreased expression of inflammation-related genes (IL-
6, p65, and IL-1α), aging-related genes (p21 and p53), and 
growth factor-related genes (Igf1, mTOR) under Nrip1 
knockdown [210]. ADSCs have exhibited anti-aging and 
skin-rejuvenating characteristics when combined with 
other approaches like CO2 laser surface repair and cul-
tivated fibroblasts. Potential connections include the 
MAPK and TGF-β pathways, which modulate MMP 
production and ECM formation [75, 76]. ADSC-condi-
tioned medium (ADSC-CM) was discovered to reduce 
ROS production and suppress photoaging through inhib-
iting IL-6 and MMP-1 production and enhancing the 
antioxidant gene heme oxygenase-1 (HO-1) expression 
[211]. Hwang et al. discovered NF-κB pathway activa-
tion in another investigation. Both ROS production and 
MMP expression were improved in the therapy group 
using neural stem cell-conditioned medium (NSC-CM) 
and its released components, TIMP-1 and TIMP-2 [212]. 
The activation of the DNA repair enzyme Rad50 and 
consequent suppression of the DNA damage biomarker 
γ-H2AX serve to highlight the protective impact of NSC-
CM [212]. In the treated skin tissue, higher levels of tis-
sue proteinase K and MMP-12, as well as enhanced M2 
macrophage infiltration were found, suggesting elastino-
lytic and perhaps anti-inflammatory effects [213].

In vitro tests have revealed that HDFs are shielded 
from oxidative damage by ADSC-CM [214]. In an in vitro 
study of UVB irradiation, Li et al. found that ADSC-CM 

effectively upregulated the production of antioxidant 
response factors, like TGF and HO-1, while downregu-
lating the activity and transcription of UVB-induced sig-
naling pathways, like AP-1, MAPKs, and NF-κB [211]. 
Therefore, ADSC-CM exerts protective properties on 
HDFs and HaCaTs against UVB-induced photoaging 
[134]. Guo et al. reported that platelet-derived growth 
factor AA (PDGF-AA), which is present in ADSC-CM, 
also activates the PI3K/Akt signaling pathway, mediating 
ECM deposition, photoaging-induced proliferation, and 
HDFs remodeling [215]. The results suggest that well-
prepared ADSC-CM has a positive preventive effect on 
preventing intrinsic and extrinsic aging damage of HDFs 
to some extent. Also, the results clarify that PDGF-AA 
may help to obtain better results with other elements of 
ADSC-CM [134].

Nevertheless, the components of ADSC-CM are quite 
complicated and do not work synergistically to achieve 
anti-aging goals. Exosomes are important components 
of ADSC-CM and may have positive independent or syn-
ergistic effects [134]. Exosomes have the ability to facili-
tate intercellular communication as well as control HDFs 
characteristics [18]. Exosomes formed by three-dimen-
sional growth of HDFs spheres (3D-HDF-exos) boost 
type I procollagen expression while decreasing MMP-1 
expression via TNF-α downregulation and TGF-β upreg-
ulation [216]. Exosomes transport a variety of membrane 
proteins and cytoplasmic components, and they modu-
late pigmentation in both healthy and pathological situ-
ations through controlling gene expression and enzyme 
activity [18]. 3D-HDF-exos led to greater amounts of skin 
collagen deposition in vitro and in a naked mouse pho-
toaging model than BMMSC-derived exosomes. Thus, 
3D-HDF-exos may control cutaneous fibroblasts, stimu-
late appropriate collagen formation, reduce inflammatory 

Table 1 Current clinical studies of skin wound healing and scar repair
Source Research Contents Finding References
ADSCs a phase I trial of seven participants with recurrent ulcers and isch-

emic limb injuries
ADSCs improve wound healing by lowering 
leg pain and ulcer size

Bura et al. 2014 [201]

ADSCs treat chronic wounds with a biological bandage made of ADSCs and 
adult acellular collagen matrix

the dressing greatly increase dermal revas-
cularization and wound reformation

Lafosse et al. 2015 
[202]

UMSCs a clinical trial with randomization and control to treat diabetic foot 
ulcers

three months after UMSCs implantation, 
ulcer is entire or progressing recovery

Qin et al. 2016 [203]

placen-
tal MSCs

local application of alginate sodium gel containing placental MSCs to 
ulcerative diabetes foot

the ulcer basically heals after three weeks Zeng et al. 2017 [204]

ADSCs treatment of diabetes foot with allogeneic ADSCs tablets based on 
hydrogel

the ADSCs group has a higher rate of full 
wound healing

Moon et al. 2019 
[205]

UMSCs the impact of serum-containing human UMSC medium on laser 
therapy recovery

reduce the recovery time after treatment for 
erythema and laser ablation treatment

Jihee Kim et al. 2020 
[206]

ADSCs the ability of ADSCs to accelerate the healing of skin wounds ADSCs promote wound healing Zhou et al. 2022 [207]
MSCs utilize fibrin polymer sprays to apply cultured autologous MSCs to 

wounds
increase healing in those with chronic, non-
healing lower limb wounds

Falanga et al. 2007 
[117]

MSCs give MSCs to wounds with matrix or hydrogel accelerate healing and significantly improve 
clinical outcomes

Dash et al. 2009 [208]
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responses, and have anti-aging properties [217]. Oh et 
al. reported that in UVB-driven photoaging and normal 
aging models, human iPSC-exos ameliorated genetic 
and phenotypic abnormalities in photoaging HDFs. The 
favorable benefits of iPSC-exo were accomplished mech-
anistically by lowering MMP1/3 and senescence-asso-
ciated β galactosidase expression while increasing type 
I collagen production in aged HDFs [218]. Wang et al. 
discovered that ADSCs and their CM effectively reduced 
UVB or α-MSH-induced hyperpigmentation in B16F10 
cells in mice ears or human skin substitutes in vivo and 
in vitro by suppressing melanin formation and boost-
ing melanosome breakdown. They also found that miR-
199a and miR-181a-5p extracted from ADSCs exosomes 
significantly suppressed melanogenesis via inhibiting 
microphthalmia-associated transcription factor, a major 
regulator that controls melanogenesis and promotes 
melanosome degradation through activation of autoph-
agy [219].

Bae et al. discovered that exosomes expressing mmu-
miR-291a-3p mechanically corrected HDFs aging via the 
TGF-β receptor 2 pathway. According to this research, 
ESC-exo mmu-miR-291a-3p has the ability to slow the 
aging of the skin [220]. Some research has indicated that 
exosome has numerous growth factors linked to skin 
regeneration, like EGF and bFGF [221]. According to the 

activation of Col-1 and glutathione peroxidase-1 and a 
decrease of MMP-1, hucMSC-derived extracellular ves-
icles prevent photoaging via lowering ROS production, 
increasing fibroblast growth, and avoiding the arrest of 
the cell cycle [222]. Using ADSC-exo treatment, Liang 
et al. published PCR data indicating enhanced type I col-
lagen mRNA expression and reduced MMP-1, MMP-3, 
and type III collagen expression [223]. Meanwhile, TGF-
β1 and TIMP-1 expression were upregulated, leading to 
the restoration of photodamaged dermal fibroblasts [224] 
(Fig. 7).

Liposomes, vesicles, solid lipid nanoparticles, and 
metal nanoparticles are some of the most popular nano-
carriers utilized in cosmetics [225, 226]. The active ingre-
dients are often packaged in nanocarriers to promote 
skin absorption and achieve better cosmetic and thera-
peutic effects [227]. Nanomaterials have been employed 
in sunscreen for their excellent encapsulation capabilities, 
better stability of encapsulated bioactive ingredients, and 
controlled release. Nanoparticles based on zein exhibit 
antioxidant effects on matrix metalloproteinase MMP-1 
[228]. Natural compounds and poly ε-caprolactone nano-
fibers can combat stem cell aging and prevent aging 
caused by ultraviolet radiation [229]. Alginate/gelatin 
hydrogel bioink and glucosamine-based supramolecu-
lar nanotubes can maintain the pluripotency of MSCs 

Fig. 7 The mechanism by which MSCs promote skin rejuvenation. In aging skin, MSCs stimulate the release of Rad50, HO-1, TGF-β, and TIMP-1, lower ROS 
levels, suppress inflammatory responses, inhibit the expression of MMP, IL-6, γ-H2AX, MAPKs, AP-1, NF-κB, and TNF-α, and promote the differentiation and 
migration of HaCaTs and HDFs, which in turn stimulate the synthesis of collagen and ECM, leading to skin rejuvenation
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[230, 231]. Gold nanoparticles can be used as anti-aging 
components [232]. Nanoparticles created from Rosa Flo-
ribunda Charisma could be an organic source of a new 
anti-aging ingredient for the skincare and cosmetics 
industries [233]. Future research can consider the com-
bination therapy of multiple nanomaterials and MSCs to 
achieve higher anti-aging effects. Table 2 presents recent 
clinical studies using MSCs therapy to promote skin reju-
venation. More related research is expected to be con-
ducted in the future.

Conclusions
Cutaneous medical aesthetics has gained more attention 
recently, particularly in relation to skin renewal and scar-
less skin wound healing. Mesenchymal stem cell therapy 
has demonstrated significant promise in encouraging 
skin repair and rejuvenation via paracrine actions, immu-
nological regulation, inflammatory management, and tis-
sue differentiation. The paracrine influence of MSCs is 
the most important, controlling intercellular contacts via 
cytokines such as VEGF, bFGF, and PDGF, and extracel-
lular vesicles such as exosomes, of which exosomes have 
been the most extensively studied. The newly proposed 
stem cell lysates have also shown promising therapeutic 
effects, helping to combat skin photoaging and improve 
skin condition. Unfortunately, there isn’t much research 
being done on this topic right now.

Clinical application of MSC therapy is still far off, 
despite the fact that in vitro and in vivo trials have shown 
great promise. First of all, basic cell and animal research 
cannot correctly reflect human situations. This is due 
to species variances in human and animal skin tissues, 
resulting in differences in dermatological and healing 
mechanisms between human and animals. For instance, 

mouse skin is laxer than human skin, and mice recover 
via wound contraction, which differs markedly from 
human wound healing [241]. Another issue is the time it 
takes for scar onset. Most mouse models produce mature 
hyperplastic or keloid scars weeks to months after inci-
sional injuries [242]. Excessive scarring may occur after a 
few months in people, with biomolecular proof of disease 
progression after one year; keloids and hyperplastic scars 
have been found to return months to years after success-
ful treatment [243–245]. Thus, the brief life of the mouse 
model could not provide enough evidence to determine 
whether the positive impacts of MSCs treatment persist. 
Future investigations of porcine models with extensive 
follow-up periods may aid in this [246]. Furthermore, dif-
ferences in clinical trials like cell source, dosage, and drug 
delivery technique make direct comparisons between 
studies difficult. From differentiation potential to immu-
nomodulatory capacity, MSCs of different tissue origins 
differ greatly in their biological properties [247–249]. 
Future research is needed to determine which cell types 
have the most effective therapeutic effects. This data will 
be valuable for MSCs quality control in clinical settings, 
ensuring predictable repair results [250]. It is also critical 
to create appropriate and consistent patient selection cri-
teria, which will serve as the basis for subsequent treat-
ment comparisons. Furthermore, the number of patients 
currently participating in completed and ongoing clini-
cal trials is minimal, most clinical trials lack adequate 
controls, and no conventional treatment is utilized as 
a positive control to establish the efficacy of a benefi-
cial MSCs-based treatment. Thus, future high-quality 
clinical studies, particularly massive, randomly assigned, 
double-blind, controlled clinical studies with a lengthy 
follow-up period, are urgently needed [250]. Last but 

Table 2 Current clinical studies of skin anti-aging/rejuvenation
Source Research Contents Finding References
amniotic 
MSCs

the effects of amniotic MSC-CM on photoaging significant improvement in photoaging after 
treatment

Prakoeswa et al. 
2019 [234]

amniotic 
fluid MSCs

use stem cell conditioned media together with acupuncture for 
facial rejuvenation

enhance skin texture, improve collagen and 
elastin production, and help regulate face 
aging

El-Domyati, M. et 
al. 2020 [235]

ADSCs use ADSCs for ECM regeneration in patients with solar elastosis obtain the full recovery of solar elastosis Luiz Charles-de-Sá 
et al. 2020 [213]

ADSCs investigate the effect of protein isolates from ADSC medium ap-
plied via microneedles to Asian skin

present rejuvenating and whitening efficacy Wang et al. 2018 
[236]

red deer 
umbilical 
cord lining 
MSCs

compare the efficiency of red deer MSCs extract to a vehicle for 
face rejuvenation

effective restorative function on aging faces Marwan Alhad-
dad et al. 2019 
[237]

ADSCs analyze the impact of combining niacinamide with ADSC-CM in 
topical post-laser treatment

valid anti-aging impact Lee et al. 2020 
[238]

ADSCs nano method implantation of adipose tissue containing stem 
cells for skin therapy in patients

better skin quality, reduced spots and 
pigmentation

Omeed Memar et 
al. 2014 [239]

MSCs bioactive substances made from MSC-CM to address dark under-
eye circles

reduce the under-eye dark circles and im-
prove the overall look of the eye zone

Samatha Bhat et 
al. 2022 [240]
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not least, the safety of stem cell treatment is still being 
researched. The use of MSCs involves some risk, which 
can’t be overlooked while developing clinical protocols. 
Genomic instability has been reported to accumulate in 
the progeny of MSCs during ex vivo amplification [26, 
27]. As a result, adequate cell passages ought to be found 
while performing clinical studies; in particular, graft cell 
genotype should be assessed prior to cell transplantation. 
MSCs have been shown in animal models to migrate to 
tumors and promote tumor development and progres-
sion [251, 252]. Although current clinical studies have 
not reported any occurrences of tumor formation follow-
ing in vivo MSCs delivery to our knowledge, it is still vital 
to exclude any unfavorable effects through cell monitor-
ing and long-term follow-up.

Therefore, considering that the primary wound repair 
mechanism for MSCs-based treatments is paracrine 
impact and that cell-free therapy is safer, MSC- condi-
tioned medium is regarded as a potential technique to aid 
chronic wound repair since it contains several paracrine 
substances released by MSCs during in vitro culture, as 
demonstrated by several animal tests [253–256]. The exo-
somes isolated from MSC-conditioned media are the hot 
spot of stem cell therapy, which reduces the possibility of 
inadequate differentiation or cancerous transformation 
of transplanted cells, making it a safer technique [257]. 
MSCs lysate also have the same advantages, making them 
safer and more convenient for storage and transportation. 
As a result, future studies can focus on MSC exosomes 
and lysates. More preclinical and clinical researches are 
needed in the future, especially for clinical assessments 
of both the safety and effectiveness of MSC conditioned 
media and lysates [250].

To summarize, MSCs therapy offers a very broad appli-
cability promise in dermatology and cosmetic medi-
cine, but the particular mechanism of action remains 
unknown, and high-quality clinical trials are uncom-
mon. MSCs have varying biological features based on 
their origin. ADSCs are now the most studied in the skin, 
but whether they are the best choice requires additional 
research and validation. In the future, more mechanism 
research and large-scale clinical studies are required to 
establish production or application guidelines for MSCs 
therapy. To boost the healing capacity of MSCs, the dos-
age, duration, frequency, and manner of treatment, which 
have yet to be standardized, should be carefully consid-
ered. Therefore, standardized clinical guidelines that can 
ensure safety and efficacy should be developed before 
MSCs treatment enters clinical use, so that MSCs can 
play their maximum role in cosmetic dermatology while 
being harmless to the human body.
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